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1. Introduction and Background

A series of papers recently appeared on consistency of nonparametric regression
function estimators and rates of consistency. (See Collomb, 1981 for a bibliogra-
phic review). In the present work we obtain pointwise rates of consistency by de-
monstrating a law of the iterated logarithm for a large class of regression func-
tion estimators. The estimators we shall look at are of the following type:

(1.1 m (x) = n (x; Xi)Yi

1‘2‘ .
i=1 r(m
where'{Kr: rel} denotes a sequence of delta functions (or kernel sequence) and
{(xi’Yi)} i=1,2,...,n are independent observations of a distribution with unknown
positive density f(x,y).

Most nonparametric estimators of m(x) = E(Y|X=x) are of this férm, for in-
stance, the Nadaraya-Watson kernel estimator (more generally delta function esti-
mators) or orthogonal polynomial estimators,

A major result in the theory of consistency of kernel type estimators has
been obtained by Collomb who gave necessary and sufficient conditions for consis-
tency of the Nadaraya-Watson kernel estimate. For generalizations and related
work see the bibliographic review of Collomb (1981) where parallel work on ortho-
gonal polynomials is also presented. Stone (1977) considered the estimator de-

fined in (1.1) and gave general conditions on the weights Kr(x; Xi) for mn(x) to
be consistent in Lr. i.e. for

Elr'ﬁn(x)-m(x)lr +0
whenever EIY]r < © _ Stone, however, points out that it is not clear from his
results when an estimator of the Nadaraya-Watson type, to be discussed in section

. . S . . . . .
4, is consistent in L'. In the field of density estimation Wegman and Davies

(1979), Hall (1981), CsBrg3 and Hall (1982) have given a law of the iteratced

logarithm for different kinds of density estimators.

'->- R




We begin by showing a law of the iterated logarithm for the shifted estimatc

(1.2) m (x) - Em (x)

That is, we center mn(x) around its expectation. We could also center it around
ﬁ(x), the regression curve, but since the bias is purely analytically handled, it
suffices to look at (1.2). The handling with these bias terms using different
smoothness assumptions of m(+*) and Kr(°) is delayed to the sections where we ap-
ply the general result of section 2. Im section 4 we show a law of the iterated
logarithm for the Nadaraya-Watson kernel estimate with known and unknown marginal
density fx(x) of X and in section 5 we show a similar result for estimators based

on orthogonal polynomials,

2. A law of the iterated logarithm for a special triangular array.

Let {Xi,Yi)} be a sequence of independent and identically distributed rv's
with pdf £(x,y) and cdf F(x,y) and EY2<w. As in (1.1) let {Kr: rel} be a sequence
of real valued functions each of bounded variation and define

Sn(r) = .
1

i{xr(xi)vi-a[xr(xi)vi]}

nes-13

which is actually a multiple of (1.2) where we omitted the design point x for
convenience, Define also

o(r,s) = coviK (X)Y,K (X)Y} and o®(r) = o(r,r)

We will establish conditions similar to Hall (1981) and CsSrgg and Hall (1982)
under which Sn(r), r=r(n)el follows the law of the iterated logarithm. We de-

monstrate that

limsup + [§(m]17'S_(r(m) =1  a.s.
o
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» where ¢(n) = (2no°(r)loglogn) ' “. The set {Sn(r), n 21} is, in fact, a tri-
4 . angular sequence, and in this section it is shown that under certain assumptions

:E: Sn may be approximated by a Gaussian sequence with the same covariance structure. i
R~ 1
:f A law of the iterated logarithm can then easily be deduced using techniques simi- !
_ lar to Hall (1981).

;i We shall also make use of the Rosenblatt transformation (Rosenblatt, 1952)

~ i

b =

- transforming the original data points'{(xi,Yi)}Ii]_l into a sequence of mutually
A -
ﬁ" independent uniformly distributed over [0,1]2 random variables {(Xi,Yi)}2=l.
fé This transformation was also employed by Johnston (1982) and Mack and Silverman

; (1982) to obtain strong uniform consistency of Nadaraya-Watson kernel type re-

o . .
B gression function estimates. Define
o vn(un) = |x|£u |dKr(n)(x)| + |Kr(n)(-uﬁa| , n2l

“n
{E where {un} is a sequence of constants 0<unsw.
i Theorem 1. Suppose that the sequence of kernels Kr(n) and {un} satisfy
& (2.1) a v (u) = o(nllzo(r)(loglogn)llz/(logn)z) ,
B where {an} is a sequence of positive constants tending to infinity.
v 2 1,2

- ) o(r) "“(loglogn)” [E{Kr(X)-I(|x|>un)}] <

- n=3
2 o 2 1,02 2
(2.2) ) o(r) “(loglogn)” [E{xr(x)ol(lxISun)-Y 'I(|Y|>an)}] < o,

s n=3
o Then on a rich enough probability space there exists a Gaussian sequence {Tn}
?: with zero means and the same covariance structure as {Sn(r)}, and such that

‘o

Sn(r) - Tn = o(nl/zo(r)(loglogn)l/z) a.s.
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The main idea of the proof is as in Hall (1981) (for density estimators) and in
Hardle (1983) (for regression estimators) the strong approximation of Fn(z)-F(z)
density case) and of Fn(x,y)-F(x,y) (regression case) respectively. [all emplovs
for the case of density estimation the results of Komlés, Major, Tusnddy, (1975).
We will make use of a similar result (for the two dimensional case) by Tusnady
(1977). The fundamental connection between the regression estimator ﬁn('ﬁ and
its strong approximation by a Gaussian process is established by the following

lemma.

Lemma 1. On a rich enough probability space there is a version of a Brownian

Bridge B(x',y"), (x',y')e[O,l]2 such that

-C.u
P{suplen(x,y)| > (Cllogn+u)logn} < Cz-e 3 R

X,y

where C.,C,,C

1°€2 are absolute constants and

3

e (x,¥) = nl(F_(x,y)-F(x,y))-B(T(x,y))] .

Proof. This is clear from Tusnddy (1977) and the fact that nl/z[Fn(T-l(x',y') -

F(T'l(x',y'))], (x',y')e[O,l]2 is the empirical process of {(Xi,Yi)}l.:=1 (Rosen-
blatt, 1952).

The following theorem establishes now under regularity conditions on the co-
variance matrix o(r,s) that a law of the iterated logarithm (LIL) holds for

ﬁn(x) the regression function estimator as defined in (1.1).
«5- Theorem 2. Suppose that (2.1) and (2.2) hold and that

(2.3) 1lim limsup sup |o(r(m),r(n))/o>(x(n) - 1| = 0,

€+0 M mel
n,€

e when T _ = {m: |[m-n|sen}. Then

limsup # [¢(n)]°lsn(r) =1 a.s,
o
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Condition (2.3) is the same as in Hall (1981) but with

= f K. (K (x)dx

o(r,,r,) = ff yzK (x)K_ (x)f(x,y)dxdy instead of his ¢
1772 T, 2 1 T2

T
in the case of estimating the uniform density.

3. Proofs.

To establish Theorem 1 we set

T, = of[ K (0ydBTxy)

B(x',y') being the Brownian Bridge of Lemma 1 and show that the difference

R
n

n‘lcsn(r)-Tn) = n'lff K (x)yde_(x,y)
satisfies

(3.1) R ’1/20(r)(loglogn)1/2)

n

o(n a.s.

Note first that Tn has the covariance structure ascribed to it in Theorem 1.
This follows from the fact that the Jacobian J(x,y) of T(x,y) is J(x,y) = f(x,y),
the joint density of (X,Y) (see Rosenblatt, 1952) and the following lemma, stated

without proof.

Lemma 2. Let Gr(x, ) = Kr(x)y. Then

11 11
(2,2 = (J] 6, (T (x*,y"))dB(x',y") , [[ 6 (T (x",y"))dB(x",y"))
00 "1 00 "2

has a bivariate normal distribution with zero means and covariances

cov(z,,2,) = ff Krl(x)Krz(x)yzf(x,y)dxdy

] KrICx)yfcx.y)dxdyllfI e (YECx,y) dxdy]

o(rl,rz)

To demonstrate (3.1) we split up the integration regions and obtain
7
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where

From Lemma 1 we deduce that n-lsqplen(x,y)l = 0(n°l(1ogn)2) a.s
X,y

1,n

) * i et MO i St S S Bt Bt il SN SN Sl

<

=t ] ] K (yde (x,0)]

IXISun |y|San

-1
v (u)-2-a *n ius len(x,Y)l ,

1T (2
= |n izl Ri,nl s

(2)
Ri,n

E[K 00 L(|X[>u)Y-1(]Y]<a ]

n
= In-1 (3)
= ln iZIRi’nI ’

REDD = 10X ~1CIX; [su) ¥, - 1([Y [>a )]

- E[Kr(x)°I(|X|sun)-Y°I(|Y|>an)]

-1 7§ .(4)
=|n"" IR,
i=1 "

4

2

R{
i

- E[Kr(X)-I(|x|>un)-Y-I(|Y|>an)] ,

-1
n| | X_(x)ydB(T(x,y))| ,
[x|>un lylsan r

g [ k. (9yTx,y ]|,
IxISun |y|>an

a7l K BTG |
xl>u, Iylsa,

[K(X,)<TCIX; [>u ) =¥, ~1(]Y, [sa )]

) - L ) L] L]
n = [K(X) I(|Xi|>un) Y, I(|Yi|>an)]

.

.......
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and so by condition (2.1) we conclude that

(3.2) Ry o = o(n-l/zo(r)(loglogn)l/z) a.s.

Next observe that {RFZ)} 1<i<n are independent and identically distributed random
i,n

variables. We then have by Markov's inequality that for any €>0

n
P(“-l' L R(2)'>€'o(r)x'n"1/2-(loglogn)1/2)
i=1 i,n
3 E-zc(r)-z(loglogn) -E(R(Z))2

So with the assumption EY2<w and condition (2.2) it follows with the Borel-Cantelli

Lemma that

-1/2

(3.3) R = o(n o(r)(loglogn)llz) a.s.

2,n
The terms R3 n’ R4 n may be estimated in the same way using Markov's inequality

and condition (2.2) and we therefore have

R3,n = o(n'llzo(r)(loglogn)l/z) a.s.
(3.4)
R4,n = o(n'llzc(r)(loglognol/z) a.s.
The remairing terms, RS,n’ R6,n and R7,n are all Gaussian with mean zero and
standard deviations
{E(R(Z))Z}I/Z
{E(RE’;) 21/2
{E(R§4z)2}1/2

respectively. Therefore, R5 n’ for instance, can be computed by
t4

1/2

P(Rs n>€ n "/ “o(r) (loglcgn) 1/2 )

= 2.-v"enc )+ (toglogn M/ F/ [ER{D) 1 2
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where & denotes the cdf of the standard normal distribution. A similar equality

holds for R and R7 n’ therefore, we conclude in view of condition (2.2) and

6,n
the usual approximations to the tails of the normal distribution that

Rg o = o(n'l/zo(r)(loglogn)l/z) a.s.
(3.5) Rg f = o(n'llzo(r)(loglogn)l/z) a.s.
R, = o(n'l/zo(r)(loglogn)l/z) a.s.

Finally the desired result of Theorem 1 follows by putting together statements
{(3.2)-(3.5) respectively.

The proof of Theorem 2 follows in much the same way as Theorem 1 in Hall
(1981, p. 49). We only have to note that lemma 1 in Hall (1981, p. 49) has to
be replaced by (2.3). Setting Y= 1 in all our derivations shows that Hall's

result follows from ours.

¢ Kernel estimators.

Two types of kernel estimates of the regression function m(x) will be con-
sidered here. The first is due to Nadaraya (1964) and Watson (1964) and is mo-
tivated by the formula

m(x) = {[yf(x,y)dy}/£,(x)

We define the Nadaraya-Watson estimate as follows:

n -1 n
) = -1 ) K((x-X;)/h)Y./[(nh) K((x-X,)/h
wr(x) = (nn) "1 L KX /MY, L KX /0]

Consistency and asymptotic normality of m;(x) were considered by Schuster (1972

Johnston (1979), Mack and Silverman (1982) among others. If the marginal densi

fx(x) is known, it is appropriate to replace the density estimate in the denomina-

tor of m;(x) by the true density fx(x). This leads to the following estimate:

)>

ty
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n
m(x) = (nh)-liZIK((x'Xi)/h)Yi/fX(x)

considered by Johnston (1979,1982).
. 2 2 2 2 2
Let us define S7(x) = E(Y |X=x), Vi(x) = S7(x) - m (x), and assume that
fx(x), m(x) are twice differentiable and Sz(x) is continuous. We assume further
that the kernel K(+) is continuous, has compact support (-1.1) say and that
Iil uK(u)du = 0. This implies that vn(un) as used in (2.1) is constant for

large enough u,- We will make use of the following assumptions:

(4.1) nhs/loglogn +0 asn-»®
S -1 2

(4.2) Y h(loglogn) ~E[Y I(_|Y|>an)] <
n=3

where {an} is as in (2.1), (2.2) such that

a = o((nh'lloglogn)1/2/(logn)2)

(4.3) 1im limsup sup |h(m)/h(n) - ll =0 .

€0 m pel
n,c

We then have the following theorem for ﬁ;(x).

Theorem 3. Under the assumptions above

limsup # [ﬁi'(x)-m(;c)](nh/Zloglogn)l/2
e n

- 1500 KPadwe,(01Y? as.

The Nadaraya-Watson estimate follows also a LIL as the following theorem shows.

[+ ]

Theorem 4. Under the assumptions above and Z n-zh-1 <
n=1

-+

limsup [m;;(x)-m(x)](nh/210glogn)1/2

n-»o

VoS a1V as.
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Note that the only difference between Theorem 3 and Theorem 4 is the different
scaling factor. Since in general Sz(x)zvz(x) we may expect closer asymptotic
confidence bands for m;(x). This observation has already been made by Schuster
(1972) and Johnston (1982). This papers together with Hardle (1983) thus solves
the question raised by Johnston (1982) whether one should be able to compute
asymptotic confidence intervals for m;(x). Johnston derived (uniform) confidence

intervals for ﬁh(x) only.

Proof of Theorem 3. We first show that we coud center E;(x) around Eﬁh(x).

This follows from

En (x) = fx(x)‘lh‘lf K((x-u) /N)m(u) £, (W)du = m(x) + 0(h%)
using the smoothness of m(+) and fx(-) and the assumptions on the kernel K(-)
(Parzen, 1962; Rosenblatt, 1971).

From assumption (4.1) it thus follows that the bias term (Eﬁ£(x)-m(x))

vanishes of higher order. So it remains to show that

(4.4) limsup + [ﬁn(x)-Eﬁn(x)]/(nhZIOglogn)1/2
b i maed

- (200,00 f K wau)/? as.
A n n
where m_(x) = izl K((x-X;)/n)Y; = 121 K (X)Y .

From the assumptions on the kernel K(¢) we conclude that Gn(u) = h'IK(u/h)
is a delta function sequence (DFS) (Watson and Leadbetter, 1964). We make now

use of this general approach in terms of DFS's and obtain the following:

h » 6%(h) = hf 6§ (x-u)§°(w) £, (w)du-h[ f 8, (x-wym(w) £, (u)du)

» 520 £, (0 K(uwdu asn» e .

This follows from Watson and Leadbetter (1964) by noting that SZ(-)fx(o) is
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continuous and {h(| Kz)-l-di(u)} is itself a DFS. The use of this DFS-technique
would also consideraﬁly simplify Hall's proof (1981) for Rosenblatt-Parzen kernel
density estimates.

To establish (4.4) with the use of theorem 2 we have to show that (2.3) holds.
We must thus demonstrate that if h,k»0 such that h/k+1 (in view of assumption

(4.3)). then
(4.5) h lcoviK((x-X)/h)Y , K((x-Y)/K)Y} > 1

But EK({x-X)/h)Y = hf Sn(x-tﬂnﬂu)-fx(u)du = o(h+1/2), and so by the computations

for oz(h) above it remains to demonstrate that
-1 2.2
h™" [ [K((x-u)/h) -K((x-u) /k) 1S (w) £y (w)du~> 0 .

From the boundedness of Sz(°) and fx(-) it is clear that the integral above is
dominated by
M[ [K(u)-K(uh/k)]%du .
The kernel K is continuous and so K(uh/k) + K(u) a.e. and it follows that (4.5)
holds.
Assumption (2.1) follows from (4.2) since K(+) has compact support and thus
Vﬁ(un) = const. for n large enough. In view of the asymptotic formula for oz(h)

above we have by assumption (4.2)
a = o((noz(h)loglogn)l/z/(logn)z)

which is assumption (2.1). Finally, assumption (2.2) follows immediately from
(4.2) since K has compact support and as above oz(h) ~ h'l. Theorem 3 thus fol-
lows from theorem 2,

Proof of theorem 4. To prove theorem 4 we decompose

m(x) - m(x) = [(a)"'B (0 -m() £, (x)]/£,(x)

¢ £31 00 (200 -m(0) ]+ [£,(0) -£_(x)]
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n

Ny where fn(x) = (nh)-1 z K((x-Xi)/h) is a density estimate of fx(x). Now from
L i=1

b Hall (1981), Theorem 2 it follows that

+

(4.6) limsup + [fn(x)-fx(x)](nh/Zloglogn)l/z
o

[fx(x)f Kz(u)dull/2 a.s.

if we use assumption (4.1) which ensures that the bias (Efn(x)-fx(x)) = O(hz)
vanishes. Note that Hall's assumption (11) is not necessary here since we assume
that K(*) has compact support. From Noda (1976) we conclude that z“'zh-1 <™

makes m;(x)-m(x)=o(1) a.s.. This and (4.6) thus yield that the second term on

N the RHS of the decomposition above is of order«)&nh/2loglogh)1/2

) a.s.
The first summand of the decomposition above can be written as
(nh) “YA-EM /£, + ((nh) “lEA-mE,)/f. - m(f -Ef )/f., + m(£.-Ef )/f
X X X n n X X n X
As in the proof of theorem 3 it follows by assumption (4.1) that the bias terms
((nh) "'ER-mf,) and (Ef_-f,) vanish. It remains to show

4.7 (nh) " (A-ED) - m(f_-Ef )

follows the LIL, i.e.

+

limsup + [(nh)"'(B-ER) - m(f -E£ )](nh/21oglogn) /2
n>o

[Vz(x)°fx(x)°f l(z(u)du]I/2 a.s.

This can be deduced from theorem 2, if we rewrite (4.7) as

n ’ n
L[, (XY, -EK, (0Y] - m(x) (nh) ! 3 [¥, (X,) EK, (X)]

(nh) !
i=] i=1

1

n
- (nh)'l.Z’{xh(xi)[vi-m(x)] - EK (0 [Y-m(x)]} .

i=1

Next we show that (4.3) holds. The variance for the sequence above is now:




¥ I e Y

..........
----------------

heo2(h)

hef 6§(x-u)[Sz(u)-mz(x)]fx(u)du

h[J 6, (x-u) [m(w) m(x) 1 £y (w) du]

¥

Vz(x)-fx(x)I Kz(u)du as nro

As above in the proof of theorem 3 we conclude that (2.3) holds.

follows from theorem 2.

5. Orthogonal polynomial estimators.

Theorem 4 thus

Estimators of the regression function m(x) based on orthogonal polynomials

fit also in the general framework developed in the first section.

We define the

estimate based on a system of orthonormal polynomials on [-1,1] as follows:

. _anm . 40
m (x) =n izl Km(x,xi)Yi/n .Z

1

. Km(x;Xi)

where m = m(n) tends with n to infinity and

m
K (x5 X)) = _2 e

i j(X)ej(xi)

and {ej(')} is the orthonormal system of polynomials.

In the case of a known marginal density fx(x) we consider

.11
n .2 Km(x; Xi)Yi/fx(x)

m(x) =
n i=1

conditional variance respectively. We further assume that

fx(x) has compact support in (-1,1)

-1/4

(l-xz) fx(x) is integrable on (-1,1).

--------------------------------
............
................

............................
B I R B PR R S T B A T R A R O S S
...............................

As in section 4 let Sz(x) be the second conditional moment of Y and Vz(x) the

‘‘‘‘‘‘‘‘‘
..............
ot et ot

‘‘‘‘‘‘‘‘‘‘‘




We consider only the case of ej(-) = pj(-) = orthonormal Legendre polynomials

here and assume that the following holds:

(.1 lim limsup sup [m(p)/m(n)-1] =
E>0 pern ¢
T -1 21,2
(5.2) Y m " +(loglogn) E(Y °I(|Y|>an)) <o,

when {an} is as in (2.2), (4.2) a sequence of constants tending to infinity such

that

1/2

a = o(n m(loglogn)llzl(logn)z)

(5.3) n/(msloglogn) >0 as n-»> oo,

We have then the following theorem for mﬁ(x) and En(x).

Theorem 5. Under the assumptions above

limsup * [m"‘(x)-m(x)](ﬂ/Zmloglogn)]‘/2

oo

(5200 /(5,0 01 20-xH V4 ass

and

1/2

+

limsup ¢ [En(x)-m(x)](n/2mloglogn)

1/2 2)-1/4 a.s.

[V (x)/(f (x)em]

Proof. We first show that the LIL for mﬁ(x). The second assertion will then
follow as theorem 4 from theorem 3. #s in theorem 3 we show first that the bias

(Bmﬁ(x)-m(;)) is negligible.

En’ (x) [fx(x)]‘l-exm(x; X)Y

[fx(X)]'lf K, (x; u)m(u) €,(u)d

m(x) + O(m-z)
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y a slight modification of the argument proving theorem 1 in Walter and Blum

. (1979) . By the same arguments as in Hall's (1981) proof of his theorem 3 (p. 60)
»3 we conclude that

L1

! 2 2 2 )

H op ~ EIKL(xs 1Y) ~m + s2)/([£om (-D )

. Assumption (2.1) follows now from (5.2) and

flak_cx; wl = o)

- Assumption (2.2) follows also from (5.2) so we finally derive the desired result
.. from theorem 2, since (2.3) may be proved as in theorem 3 using (5.1).
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